Lock
public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException; // 可以响应中断
boolean tryLock();
boolean tryLock(long time, TimeUnit unit) throws InterruptedException; // 可以响应中断
void unlock();
Condition newCondition();
}
下面来逐个分析Lock接口中每个方法。lock()、tryLock()、tryLock(long time, TimeUnit unit) 和 lockInterruptibly()都是用来获取锁的。unLock()方法是用来释放锁的。newCondition() 返回 绑定到此 Lock 的新的 Condition 实例 ,用于线程间的协作
lock()
在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?首先,lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。需要注意的是,如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此,一般来说,使用Lock必须在try…catch…块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:
Lock lock = new ReentrantLock();
lock.lock();
try{
//处理任务
}catch(Exception ex){
}finally{
lock.unlock(); //释放锁
}
tryLock()&Lock(long time,TimeUnit unit)
tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true;如果获取失败(即锁已被其他线程获取),则返回false,也就是说,这个方法无论如何都会立即返回(在拿不到锁时不会一直在那等待)。
tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false,同时可以响应中断。如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。
Lock lock = new ReentrantLock();
if(lock.tryLock()) {
try{
//处理任务
}catch(Exception ex){
}finally{
lock.unlock(); //释放锁
}
}else {
//如果不能获取锁,则直接做其他事情
}
lockInterruptibly()
lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程 正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。例如,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。
由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出 InterruptedException,但推荐使用后者,原因稍后阐述。因此,lockInterruptibly()一般的使用形式如下:
public void method() throws InterruptedException {
lock.lockInterruptibly();
try {
//.....
}
finally {
lock.unlock();
}
}
注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为interrupt()方法只能中断阻塞过程中的线程而不能中断正在运行过程中的线程。因此,当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,那么只有进行等待的情况下,才可以响应中断的。与 synchronized 相比,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。
ReentrantLock
ReentrantLock,即可重入锁。ReentrantLock是唯一实现了Lock接口的类.
isFair() //判断锁是否是公平锁
isLocked() //判断锁是否被任何线程获取了
isHeldByCurrentThread() //判断锁是否被当前线程获取了
hasQueuedThreads() //判断是否有线程在等待该锁
getHoldCount() //查询当前线程占有lock锁的次数
getQueueLength() // 获取正在等待此锁的线程数
getWaitQueueLength(Condition condition) // 获取正在等待此锁相关条件condition的线程数
public class Test {
private ArrayList<Integer> arrayList = new ArrayList<Integer>();
public static void main(String[] args) {
final Test test = new Test();
new Thread("A") {
public void run() {
test.insert(Thread.currentThread());
};
}.start();
new Thread("B") {
public void run() {
test.insert(Thread.currentThread());
};
}.start();
}
public void insert(Thread thread) {
Lock lock = new ReentrantLock(); // 注意这个地方:lock被声明为局部变量
lock.lock();
try {
System.out.println("线程" + thread.getName() + "得到了锁...");
for (int i = 0; i < 5; i++) {
arrayList.add(i);
}
} catch (Exception e) {
} finally {
System.out.println("线程" + thread.getName() + "释放了锁...");
lock.unlock();
}
}
}/* Output:
线程A得到了锁...
线程B得到了锁...
线程A释放了锁...
线程B释放了锁...
*///:~
结果或许让人觉得诧异。第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么每个线程执行到lock.lock()处获取的是不同的锁,所以就不会对临界资源形成同步互斥访问。因此,我们只需要将lock声明为成员变量即可,如下所示。
public class Test {
private ArrayList<Integer> arrayList = new ArrayList<Integer>();
private Lock lock = new ReentrantLock(); // 注意这个地方:lock被声明为成员变量
...
}/* Output:
线程A得到了锁...
线程A释放了锁...
线程B得到了锁...
线程B释放了锁...
*///:~
ReadWriteLock
ReadWriteLock也是一个接口,在它里面只定义了两个方法:
public interface ReadWriteLock {
/**
* Returns the lock used for reading.
*
* @return the lock used for reading.
*/
Lock readLock();
/**
* Returns the lock used for writing.
*
* @return the lock used for writing.
*/
Lock writeLock();
}
一个用来获取读锁,一个用来获取写锁。也就是说,将对临界资源的读写操作分成两个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的 ReentrantReadWriteLock 实现了 ReadWriteLock 接口。
ReentrantReadWriteLock
ReentrantReadWriteLock 实现了 ReadWriteLock 接口( 注意,ReentrantReadWriteLock 并没有实现 Lock 接口 ),其包含两个很重要的方法:readLock() 和 writeLock() 分别用来获取读锁和写锁,并且这两个锁实现了Lock接口。
public class Test {
private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
public static void main(String[] args) {
final Test test = new Test();
new Thread("A") {
public void run() {
test.get(Thread.currentThread());
};
}.start();
new Thread("B") {
public void run() {
test.get(Thread.currentThread());
};
}.start();
}
public void get(Thread thread) {
rwl.readLock().lock(); // 在外面获取锁
try {
long start = System.currentTimeMillis();
System.out.println("线程" + thread.getName() + "开始读操作...");
while (System.currentTimeMillis() - start <= 1) {
System.out.println("线程" + thread.getName() + "正在进行读操作...");
}
System.out.println("线程" + thread.getName() + "读操作完毕...");
} finally {
rwl.readLock().unlock();
}
}
}/* Output:
线程A开始读操作...
线程B开始读操作...
线程A正在进行读操作...
线程A正在进行读操作...
线程B正在进行读操作...
...
线程A读操作完毕...
线程B读操作完毕...
*///:~
我们可以看到,线程A和线程B在同时进行读操作,这样就大大提升了读操作的效率。不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程也会一直等待释放写锁。
Lock 和 Synchronized 的选择
- Lock是一个接口,是JDK层面的实现;而synchronized是Java中的关键字,是Java的内置特性,是JVM层面的实现;
- Lock 可以让等待锁的线程响应中断,而使用synchronized时,等待的线程会一直等待下去,不能够响应中断;
- 通过Lock可以知道有没有成功获取锁,而synchronized却无法办到;
- Lock可以提高多个线程进行读操作的效率。
在性能上来说,如果竞争资源不激烈,两者的性能是差不多的。而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。
锁的相关概念介绍
可重入锁
如果锁具备可重入性,则称作为 可重入锁 。像 synchronized 和 ReentrantLock 都是可重入锁,可重入性实际上表明了 锁的分配粒度:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2
class MyClass {
public synchronized void method1() {
method2();
}
public synchronized void method2() {
}
}
上述代码中的两个方法method1和method2都用synchronized修饰了。假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是,这就会造成死锁,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。
可中断锁
顾名思义,可中断锁就是可以响应中断的锁。在Java中,synchronized就不是可中断锁,而Lock是可中断锁。
如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。在前面演示tryLock(long time, TimeUnit unit)和lockInterruptibly()的用法时已经体现了Lock的可中断性。
公平锁
公平锁即 尽量 以请求锁的顺序来获取锁。比如,同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。而非公平锁则无法保证锁的获取是按照请求锁的顺序进行的,这样就可能导致某个或者一些线程永远获取不到锁。
在Java中,synchronized就是非公平锁(抢占锁),它无法保证等待的线程获取锁的顺序。而对于ReentrantLock 和 ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为 公平锁(协同式线程调度)。
读写锁
读写锁将对临界资源的访问分成了两个锁,一个读锁和一个写锁。正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。可以通过readLock()获取读锁,通过writeLock()获取写锁。上一节已经演示过了读写锁的使用方法,在此不再赘述。